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1 Introduction

When working as a (social) data analyst, you will often be interested in outcomes that have
two distinct values: Did someone vote in the last election or not? Is someone a union member
or not? Does a country go to war or experience a coup d’état in a given year or not? You will,
in other words, work with dependent variables that are binary or dichotomous.
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In addition, your theory for your outcome or dependent variable will often specify several
different potential causes. For example, a person’s decision to vote in an election might depend
their age (older people tend to be more likely to vote) but also their education or income. This
means that you need to use multivariate regression to really test your theory.

You already know what you would use in this case if you had a linear dependent variable:
Ordinary least squares (OLS) regression. But one of the central assumptions underlying the
OLS model is that the dependent variable must be linear — and this assumption does not
hold if you are interested in electoral participation, union membership, or coups.

Instead, you need to use the logistic regression (a.k.a., “logit”) model. The logistic regression
model is specifically designed to analyze the effects of multiple independent variables on a
binary outcome or dependent variable. An alternative is the probit regression model,
which works slightly differently but will usually give you almost identical results.1

In this tutorial, you will learn how you estimate and interpret a logistic regression model. Topic-
wise, we continue with the example from tutorial 6 on tabular analysis: Political participation
in the form of voting in a national election.

Before you continue here, make sure that you have read and understood the introduction to the
logistic regression model in Kellstedt & Whitten (2018, Chapter 12). Otherwise, you may be
able to run the code shown here but you will not understand what any of this really means.

1If you want a thorough introduction to the logit and probit models as well as a number of other regression
models for non-linear dependent variables, you can read Long, J. S. (1997). Regression Models for Categorical
and Limited Dependent Variables. Sage, London. To learn about the even more advanced conditional logit
model and its extensions, which are often used in research on voter behavior, you can read Train, K. E.
(1993). Qualitative Choice Analysis. Theory, Econometrics, and an Application to Automobile Demand.
MIT Press, Cambridge, 3rd edition, and Train, K. E. (2009). Discrete Choice Methods with Simulation.
Cambridge University Press, Cambridge, 2nd edition.
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2 Hypotheses

As in Tutorial 6, we will look at how political participation differs by gender, and now also if
the relationship is robust to controlling for some other variables (age, education, trade union
membership). Just to remind you, the theory and hypotheses from Tutorial 6 were as follows:

The guiding hypothesis for this analysis is: Women have higher rates of political participation
than men.

The corresponding null hypothesis is that there is no difference between men and women when
it comes to political participation.

Similar to Tutorial 6, we study voting as our form of political participation.
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2.1 Setup and data management

As always, the start is to load the necessary packages, which are:

library(tidyverse) # for data management & visualization
library(prediction) # to calculate predicted probabilities
library(margins) # to calculate marginal effects
library(texreg) # to present regression results

The prediction and margins packages may be new to you (if you did not work through the
extra part of Tutorial 9 on multivariate linear regression). These two packages are used to
convert the results of regression analyses into more intuitive and useful “quantities of interest”,
which is especially important when it comes to logistic regression, as you will see further
below.
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2.2 Data import and initial data cleaning

This part is exactly as before and you should now already know what to do here (see Tutorials
8 and 9 for details):

1. Use haven::read_dta() to import the ESS round 7 (2014) dataset; save it as ess7;
2. Transform the dataset into the familiar format using labelled:: unlabelled();
3. Trim the dataset:

• Keep only observations from Norway;
• Select the following variables: essround, idno, cntry, vote, eduyrs, agea, mbtru,

and gndr;
• Use the pipe to link everything;
• Save the trimmed dataset as ess7;

4. If you like, create a data dictionary using labelled::generate_dictionary();
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2.3 Preparing the dependent variable

2.3.1 Getting rid of extra categories

The previous part took care of most of the data cleaning and preparation, but the dependent
variable (vote) needs a bit more work. We go over this in detail because the situation here is
one that you may often encounter in practice, so it is good to know how to deal with it.

You will see more clearly what the problem is when you let R print out a frequency table of
the variable with table():

table(ess7$vote)

Yes No Not eligible to vote
1127 158 150

It turns out that the vote variable has three categories: “Yes”, “No”, and “Not eligible to
vote”. This is a problem because the type of logistic regression model we use here works only
for dependent variables that have exactly two categories.2

This means that if we want to use the vote variable, we first have to get rid of one category.
In this case, it makes sense to get rid of the “Not eligible” category because the people who
are not eligible to vote (e.g., immigrants) have by definition a probability of 0 to vote, which
means they are not that interesting to us here.

Therefore, we recode the vote variable by setting all cases that fall into the “Not eligible”
category to missing (NA). To do that, we use the na_if() function. This function simply
takes a variable (specified under x in the function) and replaces all observations that have a
particular value (specified under y) with NA. In this case, we create a new version of vote
which is NA if the original version of vote is equal to “Not eligible” and then replace the old
with the new version in the dataset:

ess7 %>%
mutate(vote = na_if(x = vote,

y = "Not eligible to vote")) -> ess7

Important: You obviously need to save the result with the assignment operator. In this case,
we use the “reversed” assignment operator and save the dataset with the new version of the
vote variable under the old name (ess7).

2There are of course other models for more complex variables, see e.g., Long, J. S. (1997). Regression Models
for Categorical and Limited Dependent Variables. Sage, London; or Train, K. E. (1993). Qualitative Choice
Analysis. Theory, Econometrics, and an Application to Automobile Demand. MIT Press, Cambridge, 3rd
edition.
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If we now again tabulate the vote variable, the “Not eligible” category is empty:

table(ess7$vote)

Yes No Not eligible to vote
1127 158 0

But you will also notice another thing: The “Not eligible” category is now empty, and therefore
no longer useful. This means we can get rid of it by using droplevels():

ess7$vote <- droplevels(ess7$vote)

Another check reveals that the variable is now probably coded and has exactly two categories:

table(ess7$vote)

Yes No
1127 158

2.3.2 Setting the reference category

A last thing: When you run a logistic regression model, R will take one category of the
dependent variable as the ‘baseline’ or ‘reference’ category and then estimate the probability
of an observation falling into the other category. For example, if the baseline category of vote
is “No”, then R will estimate the probability of falling into the “Yes” category. Importantly, R
might also go the other direction and take “Yes” as the reference category. In this case, the
model will still be correct — but the interpretation might be weird.

To be sure that R picks the correct reference category, it makes sense to set it explicitly. To
do this, you use the relevel() function:

ess7$vote <- relevel(ess7$vote,
ref = "No")

With this function, we tell R that it should replace the vote variable with a new version of
itself, in which “No” is the reference or baseline category.
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3 Descriptive statistics

It is always good practice to present your dependent variable to your readers in your report
or thesis so that they understand what you are working with. In this case, a bar graph would
make sense:

ess7 %>%
drop_na(vote) %>% # we remove the NAs for the graph
ggplot(aes(x = vote)) +

geom_bar() +
labs(x = "Participated in last national election?",

y = "Number of observations") +
theme_classic()
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Normally, you would now also do more uni- and bivariate analyses using graphs and tables
and present these (see e.g., Tutorial 9). For the sake of brevity, however, we will now move
straight to the multivariate regression analysis.
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4 Multivariate logistic regression

You probably remember that you can run a linear regression in R with the lm() function. Inside
this function, you specify the model formula (e.g., income ~ education + age + gender)
and the dataset (data = mystudy). Estimating a logistic regression model works almost the
same way, with two small but important exceptions.

First, we would not use the lm() function, which is for linear models only. Instead, we use
the glm() function, which stands for generalized linear models. The glm() function allows
you to estimate regression models where your dependent variable is not linear — for example,
logistic regression with a binary variable, but also other types of models for different types of
categorical and “non-linear” variables.

And this is also the second difference: We have to tell R what type of dependent variable we
have, and what type of model we want to use. We do this by specifying the link function
between the dependent variable and the independent variables (see Kellstedt & Whitten 2018,
Chapter 12 for a detailed explanation of what a “link function” is) with the family option
(“argument”). In our case, because our dependent variable vote is a binomial variable (a
categorical variable with two categories) we specify family="binomial".

As in the case of lm(), you first run the model and store the results as a model object. Then
you can let R show you a summary of the results with summary().
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4.1 Bivariate model

As before, we start with a bivariate model that includes only the main independent variable,
gndr:

mod1 <- glm(vote ~ gndr ,
data = ess7, family = "binomial")

summary(mod1)

Call:
glm(formula = vote ~ gndr, family = "binomial", data = ess7)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.8891 0.1144 16.517 <2e-16 ***
gndrFemale 0.1632 0.1709 0.955 0.34
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 958.03 on 1284 degrees of freedom
Residual deviance: 957.12 on 1283 degrees of freedom
(151 observations deleted due to missingness)

AIC: 961.12

Number of Fisher Scoring iterations: 4

At first sight, the model results look similar to what you got from lm(): You get coefficient
estimates under Estimate, standard errors, p-values, and significance starts in addition to
some summary statistics.

But be careful: The coefficient estimates you get from a logistic regression model are loga-
rithmic odds-ratios (or “log-odds”) and these very difficult to interpret by themselves. All you
can really directly interpret are the p-values and the signs of the coefficients (are they positive
or negative?). In other words, all you can see is if a variable has a positive or negative effect
and if that effect is statistically different from 0 — but the coefficient estimates from
a logit model cannot really be interpreted as measures of how strong or weak a
given effect is exactly.

In this case, you can see that the dummy for females (which R automatically created) is
positively associated with voting (i.e., women have a higher probability of voting than men),
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but also that the relationship is not statistically significant (and we conclude therefore that
there is most likely no difference between men and women).
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4.2 Multivariate model

Next, we see what happens when we include the other independent variables and make the
model multivariate:

mod2 <- glm(vote ~ gndr + eduyrs + agea + mbtru,
data = ess7, family = "binomial")

summary(mod2)

Call:
glm(formula = vote ~ gndr + eduyrs + agea + mbtru, family = "binomial",

data = ess7)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.923511 0.525497 -1.757 0.0788 .
gndrFemale 0.122934 0.177377 0.693 0.4883
eduyrs 0.114889 0.027353 4.200 2.67e-05 ***
agea 0.034218 0.005432 6.300 2.98e-10 ***
mbtruYes, previously -0.418963 0.245144 -1.709 0.0874 .
mbtruNo -0.553805 0.206417 -2.683 0.0073 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 957.51 on 1282 degrees of freedom
Residual deviance: 880.50 on 1277 degrees of freedom
(153 observations deleted due to missingness)

AIC: 892.5

Number of Fisher Scoring iterations: 5

The effect of being a woman is still the same as before: The coefficient is positive, but not
significant. Thus, there is probably no difference between men and women when it comes to
voting in elections.

But you also see that the other variables have significant effects: Every additional year of
education completed significantly raises one’s probability to participate in an election, all else
held constant, and so does every additional year of age.

The trade union membership variable is a categorical variable, and thus has a different inter-
pretation: Here the (omitted) baseline or reference category is “Being a union member”, and
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the displayed coefficients for “Not a member” and “Previously been a member” indicate the
differences to that reference category. In this case, having previously been a union member
and not being a union member corresponds to a lower chance of participating in an election,
and the difference is significant at conventional levels in the case of the “No” category.
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4.3 Presenting the results as a table

As in the case of a linear regression analysis before, it is important to present these results in
a proper table. And here you can again use the texreg() package:

screenreg(list(mod1,mod2),
stars = 0.05,
custom.coef.names = c("Intercept",

"Female","Years of educ. completed","Age",
"Previous union member","Not a union member"))

==============================================
Model 1 Model 2

----------------------------------------------
Intercept 1.89 * -0.92

(0.11) (0.53)
Female 0.16 0.12

(0.17) (0.18)
Years of educ. completed 0.11 *

(0.03)
Age 0.03 *

(0.01)
Previous union member -0.42

(0.25)
Not a union member -0.55 *

(0.21)
----------------------------------------------
AIC 961.12 892.50
BIC 971.44 923.45
Log Likelihood -478.56 -440.25
Deviance 957.12 880.50
Num. obs. 1285 1283
==============================================
* p < 0.05

This is also helpful to you because you get a few more helpful summary statistics like the BIC
and AIC information criteria (lower values mean a better-fitting model) and the deviance (a
measure that gives you an indication of how far off your model is, comparable to the RMSE
in a linear regression model). The log-likelihood is a quite cryptic statistic and primarily used
to evaluate the overall significance of your model.3

3You can see if your model as a whole is significantly better at predicting your outcome by using a likelihood-
ratio test (see Long 1997, Chapter 4). In R, you get this by running an “empty” model (e.g., mod0 <-
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Still: All you can say is whether a variable has a significant effect, and in which direction that
effect goes — but the main problem remains: You cannot say by how large the effect of
a variable really is! To do so, you need to calculate predicted probabilities or changes in
predicted probabilities — and this comes next.

glm(vote ~ 1 , data = ess7)) and then comparing the empty model with your main specification with
the anova() function (e.g., anova(mod0,mod2)).
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5 Calculating meaningful quantities of interest

You may remember from the previous tutorials that you can use the prediction and margins
packages to calculate predicted values and marginal effects based on a linear regression model
result. And you can do the same with a logistic regression model, the only difference is that
everything is expressed in predicted probabilities or changes in these probabilities.

5.1 Predicted probabilities

The best place to start is with overall predicted probabilities because these are the most
intuitive to interpret. To get these, we use the prediction() function from the prediction
package.

When we use this function, we need to specify which model we want to base the prediction
on and over which values of which variable. Since our main interest is in the effect of gender,
we start by getting the predicted probabilities of voting for men and women based on the
multivariate model:

prediction(mod2,
at = list(gndr = c("Male","Female")))

Data frame with 2566 predictions from
glm(formula = vote ~ gndr + eduyrs + agea + mbtru, family = "binomial",

data = ess7)
with average predictions:

gndr x
Male 0.8711

Female 0.8834

The numbers you get here are the predicted probabilities of voting in the usual 0-1 notation,
where 1 corresponds to 100%. You can see that men have almost exactly the same probability
of voting as women: 87% compared to 88%.

To also get measures of uncertainty and statistical significance (p-values & confidence intervals),
we can use the prediction_summary() function:

prediction_summary(mod2,
at = list(gndr = c("Male","Female")))
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at(gndr) Prediction SE z p lower upper
Male 0.8711 0.01240 70.23 0 0.8468 0.8954

Female 0.8834 0.01269 69.62 0 0.8585 0.9083

Here, the p-values tell us that both predicted probabilities are significantly different from 0:
We can say that both men and women in the overall Norwegian population have a probability
of voting that is higher than 0 (which is arguably not very surprising).

The more interesting (but harder to see) thing is that the confidence interval for one gender
include the predicted value of the other gender. For example, the confidence interval for the
predicted probability of voting for men includes the predicted value for women. This reflects
again the lack of a statistically significant effect of gender.

And this lack of a statistically significant difference between men and women is probably
easier to see when you visualize the result (as before, by “piping” the result into a ‘ggplot()
graph):

prediction_summary(mod2,
at = list(gndr = c("Male","Female"))) %>%

ggplot(aes(x = `at(gndr)`, y = Prediction, ymin = lower, ymax = upper)) +
geom_point() +
geom_linerange() +
scale_y_continuous(breaks = seq(.85,.95,.01),

labels = scales::percent) + # to get real percentages
labs(x = "Gender", y = "Predicted probability of voting",

caption = "95% confidence intervals.") +
theme_classic()
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95% confidence intervals.

The conclusion to be drawn here is then obviously that our theory is wrong and we need to
stick with the null hypothesis: Gender does not matter for electoral participation.
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You can of course use the prediction() function also to get predicted probabilities for numeric
independent variables. And, in this case, this also gets us a more interesting result.

For example, let’s look at how the effect of education (eduyrs) on voting when expressed
in predicted probabilities. To get these (plus measures of uncertainty), we use the
prediction_summary() function and specify a sequence of values of eduyrs over which these
should be calculated:

prediction_summary(mod2,
at = list(eduyrs = seq(from = 0, to = 25, by = 1)))

at(eduyrs) Prediction SE z p lower upper
0 0.6256 0.078460 7.973 1.547e-15 0.4718 0.7794
1 0.6496 0.071000 9.149 5.764e-20 0.5104 0.7887
2 0.6728 0.063614 10.577 3.811e-26 0.5482 0.7975
3 0.6954 0.056396 12.330 6.234e-35 0.5848 0.8059
4 0.7171 0.049430 14.507 1.099e-47 0.6202 0.8139
5 0.7378 0.042792 17.243 1.266e-66 0.6540 0.8217
6 0.7577 0.036551 20.730 1.857e-95 0.6861 0.8293
7 0.7766 0.030769 25.239 1.514e-140 0.7163 0.8369
8 0.7944 0.025505 31.148 5.406e-213 0.7444 0.8444
9 0.8113 0.020819 38.969 0.000e+00 0.7705 0.8521
10 0.8271 0.016781 49.290 0.000e+00 0.7942 0.8600
11 0.8420 0.013483 62.448 0.000e+00 0.8155 0.8684
12 0.8558 0.011041 77.513 0.000e+00 0.8341 0.8774
13 0.8686 0.009558 90.882 0.000e+00 0.8499 0.8874
14 0.8806 0.009012 97.708 0.000e+00 0.8629 0.8982
15 0.8916 0.009177 97.150 0.000e+00 0.8736 0.9096
16 0.9017 0.009731 92.664 0.000e+00 0.8827 0.9208
17 0.9111 0.010412 87.501 0.000e+00 0.8907 0.9315
18 0.9196 0.011063 83.127 0.000e+00 0.8979 0.9413
19 0.9274 0.011605 79.919 0.000e+00 0.9047 0.9502
20 0.9346 0.012005 77.845 0.000e+00 0.9110 0.9581
21 0.9411 0.012258 76.771 0.000e+00 0.9170 0.9651
22 0.9470 0.012369 76.563 0.000e+00 0.9227 0.9712
23 0.9523 0.012350 77.112 0.000e+00 0.9281 0.9765
24 0.9572 0.012218 78.340 0.000e+00 0.9332 0.9811
25 0.9616 0.011990 80.194 0.000e+00 0.9381 0.9851

If you now look at the numbers under Prediction, you can see how the probability of voting
increases from around 62% for someone with no education to around 96% for someone with
25 years of education. That is an increase of more than 30 percentage points, which is not
exactly small.
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A visualization should again make this even easier to see:

prediction_summary(mod2,
at = list(eduyrs = seq(from = 0, to = 25, by = 1))) %>%

ggplot(aes(x = `at(eduyrs)`, y = Prediction, ymin = lower, ymax = upper)) +
geom_point() +
geom_line(linetype = "dashed") +
geom_ribbon(alpha = .3) +
scale_y_continuous(labels = scales::percent) + # to get real percentages
labs(x = "Years of education completed",

y = "Predicted probability of voting") +
theme_classic()
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The graph clearly shows the strong increase in the probability to vote as education increases.
Also visible is that the estimates are more uncertain (wider confidence intervals) at low values
of the eduyrs variable and get narrower for higher values. This most likely reflects that fact
that there are only very few observations with less than 10 years of education in the dataset.
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5.2 Marginal effects

In addition to the overall predicted probabilities, we would usually also like to know by how
much exactly a change in an independent variable changes these probabilities. These marginal
effects (i.e., changes in predicted probabilities associated with a change in a given independent
variable) are easier to interpret and more similar in nature to the regression coefficients you
get from linear regression model.

Getting these marginal effects (plus measures of uncertainty) is possible with the
margins_summary() function from the margins package.

You might appreciate the fact that using this function is fairly simple (at least in its basic
form):

margins_summary(model = mod2)
factor AME SE z p lower upper
agea 0.0034 0.0005 6.3349 0.0000 0.0024 0.0045

eduyrs 0.0116 0.0028 4.2093 0.0000 0.0062 0.0170
gndrFemale 0.0124 0.0178 0.6951 0.4870 -0.0225 0.0472

mbtruNo -0.0563 0.0216 -2.6089 0.0091 -0.0986 -0.0140
mbtruYes, previously -0.0406 0.0251 -1.6168 0.1059 -0.0897 0.0086

All we have to specify here is the model we want to base the calculations on, and the func-
tion automatically gives us the changes in the predicted probabilities associated with a given
variable.

And the result is also fairly easy to interpret: Every additional year of age increases the
probability of voting by 0.34 percentage points (0.0034 × 100), while every additional year of
education increases it by 1.16 percentage points. As the p-values indicate, these effects are
significant.

You can also see that the predicted probability of voting for women is about 1.24 percentage
points higher than that for men, but again that this is not statistically different from 0. And
finally, those who are not a union member or who have previously been members have predicted
probabilities of voting that are about 4 and 5.6 percentage points lower compared to current
union members.
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These results can of course also be visualized:

margins_summary(model = mod2) %>%
ggplot(aes(y = factor, x = AME, xmin = lower, xmax = upper)) +

geom_point(shape = 1) + # shape = 1 gives hollow dots
geom_linerange() +
geom_vline(xintercept = 0, linetype = "dashed", color = "gray") +
scale_y_discrete(labels = c("Age","Years of educ. compl.",

"Female","Not a union member",
"Previous union member")) +

scale_x_continuous(labels = scales::percent) + # to get real percentages
labs(x = "Effect of variables on pred. probability of voting",

y = "", caption = "95% confidence intervals.") +
theme_classic()

Age

Years of educ. compl.

Female

Not a union member

Previous union member

−10% −5% 0% 5%
Effect of variables on pred. probability of voting

95% confidence intervals.

Again, you see that:

• Gender makes no difference (the effect of being a woman is not significantly different
from 0).

• Age and education have positive effects, and these are significantly different from 0.
• Compared to currently being a union member (the omitted baseline category of the

union membership variable), having previously been part of a union does not significantly
change one’s probability of voting.
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• However, not being a union member does significantly reduce the probability of voting
compared to the omitted baseline category, being a union member.
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